

FACE MASK DETECTION

SYSTEM USING DEEP LEARNING

Submitted By

Madiha Zainul
Registration Number: 144-1211-0356-20

Roll Number: 203144-11-0023

Umarki Parveen
Registration Number: 144-1211-0355-20

Roll Number: 203144-11-0022

Ayantika Bera
Registration Number: 144-1211-0337-20

Roll Number: 203144-11-0021

A Project Work Submitted In Partial Fulfilment For The Degree

Of Bachelor Of Science

Under supervision

of Pallavi Roy

Department Of Computer Science

Bangabasi Morning College

University of Calcutta (2021-2023)

 2 | P a g e

CERTIFICATE

This is to certify that the research project entitled “FACE MASK DETECTION” is a bonafide

record of the work done by Madiha Zainul, Registration no. 144-1211-0356-20, Roll no.

203144-11-0023, Umarki Parvin, Registration no. 144-1211-0355-20, Roll no. 203144-11-

0022 and Ayantika Bera, Registration no. 144-1211-0337-20, Roll no. 203144-11-0021 under

our supervision, in partial fulfilment of the requirements for the award of Degree of Bachelor

of Science in Computer Science from University of Calcutta for the year 2021.

---------------------------------- ---------------------------------

Pallavi Roy Saptarsi Goswami

State Aided College Teacher Head of Department,

Dept. of Computer Science Dept. of Computer Science
(Bangabasi Morning College, C.U.) (Bangabasi Morning College,

C.U.)

 3 | P a g e

ACKNOWLEDGEMENT

With great pleasure we would like to express our sincere gratitude to our respected

teacher Mrs. Pallavi Roy, who gave us the golden opportunity to do this wonderful

project on the topic “FACE MASK DETECTION”. We also grateful for her valuable

guidance and supervision. Her constant encouragement at each and every stage had

led to successful completion of our project.

We would like to express deepest appreciation towards Mr. Saptarsi Goswami, Head

of Department of computer science and authority of Bangabasi Morning College,

University of Calcutta(CU) for providing with a good environment and facilities to work

on this project.

We would also like to thank our parents and friends who helped us a lot in finalizing

this project within the limited time frame.

Madiha Zainul
Semester VI (B.Sc)

Bangabasi Morning College

University of Calcutta

Umarki Parveen
Semester VI (B.Sc)

Bangabasi Morning College
University of Calcutta

Ayantika Bera
Semester VI (B.Sc)

Bangabasi Morning College

University of Calcutta

 4 | P a g e

TABLE OF CONTENTS

Page no.

1. Abstract ... 6

2. Introduction… .. 7-8

2.1. Domain Description… .. 7

2.2. Motivation ... 8

2.3. Scope of the work… .. 8

3. Background/ Review of related work… 9-10

4. Methodology ... 11-19

4.1. Problem Formulation… .. 11

4.2. Algorithm Description .. 11-18

4.3. Other Design Descriptions… 18-19

5. Implementation… .. 20-22

6. Result and Discussion .. 23-27

7. Conclusion ... 28

8. References .. 29-30

 5 | P a g e

Abstract

This project focuses on developing a real-time face mask detection system

using deep learning techniques. The system utilizes a pre-trained

MobileNetV2 model for face detection and a custom-trained mask detector

model. The goal is to detect whether individuals in a video stream are wearing

face masks or not.

This face mask detection system can be used in various settings, such as public

spaces, offices, or schools, to ensure compliance with face mask policies. The

real-time nature of the system enables quick identification of individuals not

wearing masks, allowing for prompt action to maintain public health and

safety.

 6 | P a g e

Introduction:

Domain Description:

Introduction:

Face mask detection systems have become increasingly important in ensuring

public health and safety. With the rise of contagious diseases and the need for

preventive measures, such as wearing face masks, automated systems that

can detect and identify individuals not wearing masks have gained significant

attention. These systems leverage computer vision and deep learning

techniques to analyze video streams and provide real-time alerts when mask

non-compliance is detected. In this project, we develop a realtime face mask

detection system using deep learning algorithms to contribute to maintaining

a safe and healthy environment.

Domain Description:

The domain of face mask detection falls under the intersection of computer

vision, machine learning, and public health. It involves the development and

deployment of intelligent systems that can identify individuals who are not

adhering to mask-wearing policies in various settings. The domain

encompasses several key aspects:

1. Computer Vision: Face mask detection systems heavily rely on computer

vision techniques for tasks such as face detection, feature extraction,

and object classification. Computer vision algorithms analyze video

streams or images to identify human faces and determine whether they

are wearing masks or not.

2. Deep Learning: Deep learning algorithms, particularly convolutional

neural networks (CNNs), are commonly used in face mask detection

systems. These algorithms are trained on large datasets of labeled

images to learn patterns and features associated with masked and

unmasked faces, enabling accurate mask classification.

3. Real-Time Processing: Real-time processing is crucial in face mask

detection systems to provide immediate feedback and alerts when mask

non-compliance is detected. Efficient algorithms and optimized

hardware are employed to achieve real-time processing speeds,

allowing for timely intervention.

 7 | P a g e

4. User Interface: The user interface plays a vital role in face mask

detection systems, providing a visual representation of the video stream

or images with overlays indicating the presence or absence of masks.

Clear and intuitive interfaces enable quick interpretation of results and

facilitate monitoring and decision-making.

5. Applications: Face mask detection systems find applications in various

domains, including public spaces, transportation hubs, healthcare

facilities, educational institutions, and workplaces. These systems help

enforce mask-wearing policies, enhance safety measures, and

contribute to preventing the spread of contagious diseases.

 Motivation:

The increasing importance of public health and safety has led to a growing

demand for technologies that can assist in monitoring and enforcing safety

measures. Face mask detection systems play a crucial role in ensuring

compliance with mask-wearing policies in various settings, such as workplaces,

educational institutions, and public spaces. By automating the process of mask

detection, these systems can help reduce manual monitoring efforts, improve

efficiency, and contribute to maintaining a safe and healthy environment.

Scope of the Work:

This project focuses on the development of a real-time face mask detection

system using deep learning techniques. The scope includes the following key

aspects:

1. Face Detection: Utilizing a pre-trained MobileNetV2 model for accurate

and efficient face detection from video streams. This step involves identifying

and localizing faces within the captured frames.

2. Mask Detection: Training a custom mask detection model using deep

learning algorithms. The model is trained on a dataset consisting of labeled

 8 | P a g e

images of individuals wearing and not wearing masks. The objective is to

classify whether a detected face is wearing a mask or not.

3. Real-time Processing: Implementing the system to process video

streams in real-time, enabling immediate detection and identification of

individuals not wearing masks. This real-time capability is essential for prompt

action and intervention.

4. Performance Optimization: Optimizing the system to achieve real-time

processing speeds while ensuring efficient utilization of computational

resources. This involves leveraging hardware acceleration and optimizing

algorithms for improved efficiency.

The developed face mask detection system has a wide range of potential

applications, including workplaces, educational institutions, retail stores, and

transportation hubs. It can contribute to enhancing safety measures,

ensuring compliance with mask-wearing policies, and ultimately mitigating

the risk of contagious diseases.

The project's scope provides a foundation for future enhancements and

integration with other safety monitoring systems, allowing for a

comprehensive approach to public health and safety.

 9 | P a g e

Background/ Review of related work:

Face mask detection has gained significant attention in recent years due to the

need for effective measures to prevent the spread of contagious diseases.

Researchers and developers have explored various approaches to tackle this

problem using computer vision and machine learning techniques. Here, we

provide a brief background and review of related work in the field of face mask

detection.

1. Traditional Computer Vision Approaches: Traditional computer vision

techniques, such as Haar cascades and HOG (Histogram of Oriented

Gradients), have been used for face detection in the past. These

methods relied on handcrafted features and classifiers to detect faces.

However, their performance may be limited when dealing with

variations in face orientations, lighting conditions, and occlusions.

2. Deep Learning-Based Approaches: With the advent of deep learning,

convolutional neural networks (CNNs) have become a popular choice for

face mask detection. Researchers have developed CNN architectures to

perform end-to-end face detection and mask classification tasks.

Models like MobileNet, VGGNet, and ResNet have been employed to

achieve accurate face detection and mask/non-mask classification.

3. Datasets for Training: Building robust face mask detection models

requires large and diverse datasets for training. Several datasets have

been curated for this purpose. Notable examples include the "Medical

Masks Dataset" and the "MaskedFace-Net" dataset, which contain

thousands of labeled images of individuals wearing masks and without

masks.

4. Transfer Learning: Transfer learning has been widely used in face mask

detection to leverage pre-trained models on large-scale datasets like

ImageNet. By fine-tuning these models on specific face mask datasets,

researchers have achieved improved performance with limited training

data.

5. Real-Time Face Mask Detection: Real-time face mask detection systems

have been developed to process video streams in real-time and provide

 10 | P a g e

immediate feedback. These systems utilize optimized algorithms,

hardware acceleration, and parallel processing techniques to achieve

low latency and high throughput.

6. Applications and Deployments: Face mask detection systems have found

applications in various domains. They have been deployed in public

spaces, transportation systems, hospitals, airports, and educational

institutions to monitor and enforce mask-wearing policies. These

systems help authorities identify individuals not wearing masks and take

appropriate actions to maintain public health and safety.

Methodology:

Problem Formulation:

The main objective of this project is to develop a real-time face mask detection

system using deep learning techniques. The problem can be formulated as

 11 | P a g e

follows: Given a video stream or a sequence of frames, the system should

detect faces within each frame and classify them as wearing a mask or not

wearing a mask. The system should provide real-time feedback and display the

results with bounding boxes and labels indicating maskwearing status.

Algorithm Description:

1. Import Libraries:

- The code begins by importing the necessary Python libraries and

modules that are required for the face mask detection application.

The libraries include TensorFlow, OpenCV (cv2), NumPy, and Imutils.

- TensorFlow is used for loading and running the deep learning

models.

- OpenCV (cv2) is used for image and video processing, including

loading, resizing, and drawing bounding boxes.

- NumPy is used for numerical operations and array handling.

- Imutils is used for convenient resizing of images.

2. Define `detect_and_predict_mask` Function:

- The function `detect_and_predict_mask` takes three parameters:

`frame`, `faceNet`, and `maskNet`.

- `frame`: This parameter represents a single frame (image) from the

video stream that will be processed for face mask detection.

- `faceNet`: The pre-trained deep learning face detection model

(MobileNetV2) used to detect faces in the input frame.

- `maskNet`: The pre-trained deep learning face mask detection

model used to predict whether the detected faces are wearing

masks or not.

3. Blob Creation and Face Detection:

 12 | P a g e

- The input frame is passed through the face detection model to

detect faces in the frame.

- A blob is created from the frame using `cv2.dnn.blobFromImage()`

function. A blob is a preprocessed image that is ready to be passed

through a deep learning network.

- The faceNet is then used to forward pass the blob to detect faces in

the image.

- The detections are obtained as bounding box coordinates,

confidence scores, and face probabilities.

4. Lists Initialization:

- Three lists, `faces`, `locs`, and `preds`, are initialized to store the

detected faces, their corresponding bounding box locations, and the

predictions for each face, respectively.

5. Loop Over Detections:

- The algorithm loops over all the detections obtained from the face

detection model.

- For each detection:

- The confidence (probability) associated with the detection is

extracted.

- If the confidence is greater than a predefined threshold (0.5), it is

considered a valid detection, and face mask detection is performed.

- The bounding box coordinates for the detected face are extracted

and converted to pixel values relative to the original frame.

- The bounding box coordinates are adjusted to ensure they fall within

the frame boundaries.

- The face region is extracted from the frame, resized to the input size

required by the face mask detection model (224x224), and

preprocessed for feeding to the model.

 13 | P a g e

- The preprocessed face and the bounding box coordinates are added

to the `faces` and `locs` lists, respectively.

6. Face Mask Prediction:

- After looping through all the detections, the algorithm checks if any

valid faces were detected (i.e., the `faces` list is not empty).

- If valid faces are found, the `faces` list is converted to a NumPy array

of float32 data type to prepare for batch prediction.

- The face mask detection model (`maskNet`) is used to predict

whether each face in the batch is wearing a mask or not.

- The predictions are stored in the `preds` list.

7. Displaying the Output:

- The algorithm then proceeds to display the output on the video

frame.

- For each detected face and its corresponding prediction:

- The bounding box coordinates and mask/no-mask probabilities are

unpacked.

- The class label ("Mask" or "No Mask") is determined based on the

probability values.

- A color (green for "Mask" and red for "No Mask") is assigned for

drawing the bounding box and label text.

- The probability value is included in the label text, which indicates the

confidence of the mask prediction.

- The bounding box and label text are drawn on the output frame.

- The output frame is then displayed in full-screen mode using

OpenCV's `cv2.setWindowProperty()` and `cv2.imshow()` functions.

8. Video Stream and Real-time Processing:

 14 | P a g e

- The code initializes the video stream from the default camera source

(src=0) using the `VideoStream` class from `imutils.video`.

- The video stream is started to capture frames continuously.

- The loop iterates through the frames, and face detection and mask

prediction are performed on each frame in real-time.

- The processed frames are displayed with bounding boxes and label

texts indicating the presence of a mask and the associated

probability.

9. User Interaction:

- The application runs in a loop until the user presses the "q" key.

- If the "q" key is pressed, the loop terminates.

10. Stop:

- After the loop, the OpenCV windows are closed

 using

`cv2.destroyAllWindows()`.

- The video stream is stopped using `vs.stop()` to release the camera

resource.

Other Design Description:

Installing software using the command-line interface (CLI) offers a

streamlined and efficient approach for users to set up applications on their

systems. This method bypasses the need for graphical interfaces and

provides a text-based environment for installation. With the CLI, users

interact with their operating systems through a series of commands,

enabling them to swiftly download, configure, and deploy software packages.

To initiate the installation process via the CLI, users typically start by accessing

a terminal or command prompt. From there, they can execute commands to

connect to the appropriate package repositories or sources, which house the

 15 | P a g e

software they intend to install. These repositories may be maintained by the

operating system itself, third-party vendors, or open-source communities.

Fig 1: If python is not available install python

Fig 2: Installing required libraries

 16 | P a g e

Fig 3: starting video stream and detecting mask from stream Implementation:

1. # import the necessary packages

2. from tensorflow.keras.applications.mobilenet_v2 import

preprocess_input

3. from tensorflow.keras.preprocessing.image import img_to_array

4. from tensorflow.keras.models import load_model

5. from imutils.video import VideoStream

6. import numpy as np

7. import imutils

8. import time

9. import cv2

10. import os

11. def detect_and_predict_mask(frame, faceNet, maskNet):

12. # grab the dimensions of the frame and then construct a blob

13. # from it

14. (h, w) = frame.shape[:2]

15. blob = cv2.dnn.blobFromImage(frame, 1.0, (224, 224),

(104.0, 177.0, 123.0))

16. # pass the blob through the network and obtain the face

detections

17. faceNet.setInput(blob)

18. detections = faceNet.forward()

19. print(detections.shape)

20. # initialize our list of faces, their corresponding locations,

21. # and the list of predictions from our face mask network

22. faces = []

23. locs = []

24. preds = []

25. # loop over the detections

26. for i in range(0, detections.shape[2]):

extract the confidence (i.e., probability) associated with

the detection

confidence = detections[0, 0, i, 2]

filter out weak detections by ensuring the confidence is

 17 | P a g e

greater than the minimum confidence if

confidence > 0.5:

compute the (x, y)-coordinates of the bounding box for the

object

box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])

(startX, startY, endX, endY) = box.astype("int")

ensure the bounding boxes fall within the dimensions of

the frame

(startX, startY) = (max(0, startX), max(0, startY))

(endX, endY) = (min(w - 1, endX), min(h - 1, endY))

extract the face ROI, convert it from BGR to RGB channel

ordering, resize it to 224x224, and preprocess it face =

frame[startY:endY, startX:endX] face = cv2.cvtColor(face,

cv2.COLOR_BGR2RGB)

face = cv2.resize(face, (224, 224))

face = img_to_array(face) face =

preprocess_input(face)

add the face and bounding boxes to their respective

lists

faces.append(face)

locs.append((startX, startY, endX, endY))

27. # only make a predictions if at least one face was detected

28. if len(faces) > 0:

for faster inference we'll make batch predictions on *all*

faces at the same time rather than one-by-one predictions

in the above `for` loop faces =

np.array(faces, dtype="float32") preds =

maskNet.predict(faces, batch_size=32)

29. # return a 2-tuple of the face and their corresponding locations

30. return (locs, preds)

31. # load serialized face detector model from disk

32. prototxtPath = r"face_detector\deploy.prototxt"

33. weightsPath =

r"face_detector\res10_300x300_ssd_iter_140000.caffemodel"

34. faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)

35. # load the face mask detector model from disk

36. maskNet = load_model("mask_detector.model")

 18 | P a g e

37. # initialize the video stream

38. print("[INFO] starting video stream...")

39. vs = VideoStream(src=0).start()

40. # create a window to display the output and set it to full screen

41. cv2.namedWindow("Frame", cv2.WINDOW_FULLSCREEN)

42. # loop over the frames from the video stream 43. while True:

44. # grab the frame from the threaded video stream and resize it

45. # to have a maximum width of 400 pixels

46. frame = vs.read()

47. frame = imutils.resize(frame, width=960)

48. # detect faces in the frame and determine if they are wearing a

49. # face mask or not

50. (locs, preds) = detect_and_predict_mask(frame, faceNet,

maskNet)

51. # loop over the detected face locations and their corresponding

52. # locations

53. for (box, pred) in zip(locs, preds):

unpack the bounding box and predictions

(startX, startY, endX, endY) = box

(mask, withoutMask) = pred

determine the class label and color we'll use to draw

the bounding box and text label = "Mask" if mask >

withoutMask else "No Mask" color = (0, 255, 0) if

label == "Mask" else (0, 0, 255)

include the probability in the label label = "{}:

{:.2f}%".format(label, max(mask, withoutMask) * 100)

display the label and bounding box rectangle on the output

frame

cv2.putText(frame, label, (startX, startY - 10),

i. cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)

cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)

54. # show the output frame in full screen

55. cv2.setWindowProperty("Frame", cv2.WND_PROP_FULLSCREEN,

cv2.WINDOW_FULLSCREEN)

56. cv2.imshow("Frame", frame)

57. key = cv2.waitKey(1) & 0xFF

 19 | P a g e

58. # if the `q` key was pressed, break from the loop 59. if key ==

ord("q"): break

60. # do a bit of cleanup

61. cv2.destroyAllWindows()

62. vs.stop()

Result and discussion:

Fig4: Find bounding box

The code first loads two pre-trained models: a face detector and a face mask

detector. The face detector is used to identify faces in the frame, and the face

mask detector is used to determine if the person is wearing a mask. The code

then loops over the frames from the video stream and calls the

detect_and_predict_mask() function to detect faces and determine if they are

wearing masks. The detect_and_predict_mask() function returns a 2-tuple of

the face locations and their corresponding predictions. The predictions are

then used to draw bounding boxes and text on the output frame.

The code was tested on a video of people wearing and not wearing masks. The

results were accurate, with the face mask detector correctly identifying

whether or not a person was wearing a mask in most cases. The code also ran

smoothly, with no noticeable lag.

 20 | P a g e

Fig5: Detection of moving objects and “Alert” message will be shown when

the gathering is detected.

In fig5, if the number of bounding box present in one frame is more than 40,

then it will consider as gathering, which is equivalent to social distance

violation. So if the no. of bounding box is greater than 40 we will generate an

“Alert” message to notify social distance violation.

 21 | P a g e

1. Plotting Training Loss and Accuracy:

• During the training process of the face mask detection model,

the model.fit() function is used to train the model on the training

data, and it provides information about the loss and accuracy of

the model on both the training and validation datasets after each

epoch.

• This information is recorded in the H variable, which holds the

history of the training process.

• The training loss, validation loss, training accuracy, and validation

accuracy are typically recorded at the end of each epoch.

• The code uses Matplotlib, a popular Python plotting library, to

create a plot that visually represents the training progress.

2. Saving the Plot as "plt.png":

• The code uses the plt.savefig("plot.png") function to save the

generated plot as a PNG image file named "plot.png" in the

working directory.

• The plt.savefig() function saves the plot that was previously

created with the Matplotlib library.

• The plot displays the training loss and accuracy curves over the

number of epochs (x-axis) on the graph, and the loss/accuracy

values (y-axis) for both the training and validation datasets.

 22 | P a g e

Fig6: Coordinates of centres plotted in the graph from shopping mall video

Here in fig 6, in the graph we are plotting centroid for all the bounding box

present in our video. It represents total no of objects which is recognized

throughout the video.

Fig7: Moving object detection

In fig7, here we are testing our model for the moving object detection. From

a video of car racing we take one frame at instance of time and detect the

object present in one frame and highlight it by bounding box. In this way we

do the same for all frame present in the video. At last after concatenate all

the frame we will have a video that will highlight object by bounding box in a

moving fashion.

 23 | P a g e

Conclusion:

In conclusion, the developed face mask detection system utilizing deep

learning techniques has shown promising results in accurately identifying

individuals wearing masks in real-time video streams. The system achieves a

high level of accuracy and robustness, allowing for effective monitoring and

enforcement of mask-wearing policies.

The system's ability to process video frames in real-time enables prompt

feedback and action, making it suitable for various applications, such as

monitoring public spaces, workplaces, and transportation systems. It provides

a user-friendly interface that displays the video stream with clear visual

indicators, facilitating ease of use and monitoring.

While the system demonstrates strong performance, there are areas for

potential improvement. Further research and development can focus on

enhancing the system's robustness to challenging lighting conditions,

occlusions, and variations in face orientations. Additionally, the system can be

extended to incorporate other features, such as social distancing monitoring

and identification of individuals in violation of mask-wearing policies.

Overall, the face mask detection system serves as a valuable tool in promoting

public health and safety. By automating the detection and monitoring of mask-

wearing, it can contribute to mitigating the spread of infectious diseases and

supporting efforts to create a safer environment for individuals.

 24 | P a g e

References:

 25 | P a g e

 26 | P a g e

 27 | P a g e

 28 | P a g e

 29 | P a g e

1. Adrian Rosebrock, "Face Mask Detection with

 OpenCV,

Keras/TensorFlow, and Deep Learning," PyImageSearch, 2020. [Online].

Available: https://www.pyimagesearch.com/2020/05/04/covid-

19face-mask-detection-with-opencv-keras-tensorflow-and-

deeplearning/.

2. P. Jaiswal, R. Sharma, S. Gupta, and M. R. Gupta, "Real-time Face Mask

Detection using Deep Learning and OpenCV," International Journal of

Scientific Research in Computer Science, Engineering and Information

Technology (IJSRCSEIT), vol. 5, no. 5, pp. 12-18, 2020.

3. H. T. Balci, F. Demir, and H. Demir, "Real-time Face Mask Detection in

Video Streams with Deep Learning," IEEE Access, vol. 8, pp.

155851155860, 2020.

4. A. M. Salem, M. F. Ahmed, and M. E. Abdelaziz, "Real-time Face Mask

Detection using Convolutional Neural Networks," in 2020 International

Conference on Computer and Information Sciences (ICCIS), 2020, pp. 1-

6.

5. P. Gupta, A. Gupta, N. Bansal, and A. Goel, "Real-time Face Mask

Detection using Deep Learning Techniques," in 2021 International

Conference on Inventive Computation Technologies (ICICT), 2021, pp. 1-

6.

6. OpenCV Library, "OpenCV: OpenCV documentation," docs.opencv.org.

[Online]. Available: https://docs.opencv.org/.

https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://docs.opencv.org/
https://docs.opencv.org/

