FACE MASK DETECTION
SYSTEM USING DEEP LEARNING

Submitted By

Madiha Zainul
Registration Number: 144-1211-0356-20

Roll Number: 203144-11-0023

Umarki Parveen
Registration Number: 144-1211-0355-20

Roll Number: 203144-11-0022

Ayantika Bera
Registration Number: 144-1211-0337-20

Roll Number: 203144-11-0021

A Project Work Submitted In Partial Fulfilment For The Degree
Of Bachelor Of Science

Under supervision
of Pallavi Roy

Department Of Computer Science
Bangabasi Morning College

University of Calcutta (2021-2023)

CERTIFICATE

This is to certify that the research project entitled “FACE MASK DETECTION” is a bonafide
record of the work done by Madiha Zainul, Registration no. 144-1211-0356-20, Roll no.
203144-11-0023, Umarki Parvin, Registration no. 144-1211-0355-20, Roll no. 203144-11-
0022 and Ayantika Bera, Registration no. 144-1211-0337-20, Roll no. 203144-11-0021 under
our supervision, in partial fulfilment of the requirements for the award of Degree of Bachelor
of Science in Computer Science from University of Calcutta for the year 2021.

Pallavi Roy Saptarsi Goswami

State Aided College Teacher Head of Department,

Dept. of Computer Science Dept. of Computer Science

(Bangabasi Morning College, C.U.) (Bangabasi Morning College,
c.U.)

2|Page

ACKNOWLEDGEMENT

With great pleasure we would like to express our sincere gratitude to our respected
teacher Mrs. Pallavi Roy, who gave us the golden opportunity to do this wonderful
project on the topic “FACE MASK DETECTION”. We also grateful for her valuable
guidance and supervision. Her constant encouragement at each and every stage had
led to successful completion of our project.

We would like to express deepest appreciation towards Mr. Saptarsi Goswami, Head
of Department of computer science and authority of Bangabasi Morning College,
University of Calcutta(CU) for providing with a good environment and facilities to work
on this project.

We would also like to thank our parents and friends who helped us a lot in finalizing
this project within the limited time frame.

Madiha Zainul

Semester VI (B.Sc)
Bangabasi Morning College
University of Calcutta

Umarki Parveen
Semester VI (B.Sc)
Bangabasi Morning College
University of Calcutta

Ayantika Bera

Semester VI (B.Sc)
Bangabasi Morning College
University of Calcutta

3|Page

TABLE OF CONTENTS

Page no.

L.ADBSEract ... 6

2. Introduction...ccoiiiiiii 7-8
2.1. Domain DescCription...oevvviiieiiieeeieeeeeeeeee e, 7

2.2. MOtIVAtION ..eeeiiiiiiiieeeeeee e 8
2.3.Scope of the WOrkK...uvvvveeieiiiieeeeiiiieeeeeeeeccce, 8

3. Background/ Review of related work...ccooceunn..... 9-10
4. MethodOolOgYooovveeieeeeeeee e 11-19
4.1. Problem Formulation...ccccceeeeeiiiiiiieeeiveeee 11

4.2. Algorithm Descriptionccoeeeeeiiiiiiiiieeeiiiieeeee 11-18

4.3. Other Design Descriptions...cvveeeeeeiiiieiiiieeeeeeenens 18-19
5.Implementation... ..., 20-22
6. Result and DiScuSSIiONc..cevviiieiiiiiiiieee e, 23-27
7. CoNCIUSIONoooiiiiiiie s 28

8. Referencesooooviiiiiiiiiee e 29-30

4| Page

Abstract

This project focuses on developing a real-time face mask detection system
using deep learning techniques. The system utilizes a pre-trained
MobileNetV2 model for face detection and a custom-trained mask detector

model. The goal is to detect whether individuals in a video stream are wearing
face masks or not.

This face mask detection system can be used in various settings, such as public
spaces, offices, or schools, to ensure compliance with face mask policies. The
real-time nature of the system enables quick identification of individuals not

wearing masks, allowing for prompt action to maintain public health and
safety.

5|Page

Introduction:

Domain Description:

Introduction:

Face mask detection systems have become increasingly important in ensuring
public health and safety. With the rise of contagious diseases and the need for
preventive measures, such as wearing face masks, automated systems that
can detect and identify individuals not wearing masks have gained significant
attention. These systems leverage computer vision and deep learning
techniques to analyze video streams and provide real-time alerts when mask
non-compliance is detected. In this project, we develop a realtime face mask
detection system using deep learning algorithms to contribute to maintaining
a safe and healthy environment.

Domain Description:

The domain of face mask detection falls under the intersection of computer
vision, machine learning, and public health. It involves the development and
deployment of intelligent systems that can identify individuals who are not
adhering to mask-wearing policies in various settings. The domain
encompasses several key aspects:

1. Computer Vision: Face mask detection systems heavily rely on computer
vision techniques for tasks such as face detection, feature extraction,
and object classification. Computer vision algorithms analyze video
streams or images to identify human faces and determine whether they
are wearing masks or not.

2. Deep Learning: Deep learning algorithms, particularly convolutional
neural networks (CNNs), are commonly used in face mask detection
systems. These algorithms are trained on large datasets of labeled
images to learn patterns and features associated with masked and
unmasked faces, enabling accurate mask classification.

3. Real-Time Processing: Real-time processing is crucial in face mask
detection systems to provide immediate feedback and alerts when mask
non-compliance is detected. Efficient algorithms and optimized
hardware are employed to achieve real-time processing speeds,
allowing for timely intervention.

6|Page

4. User Interface: The user interface plays a vital role in face mask
detection systems, providing a visual representation of the video stream
or images with overlays indicating the presence or absence of masks.
Clear and intuitive interfaces enable quick interpretation of results and
facilitate monitoring and decision-making.

5. Applications: Face mask detection systems find applications in various
domains, including public spaces, transportation hubs, healthcare
facilities, educational institutions, and workplaces. These systems help
enforce mask-wearing policies, enhance safety measures, and
contribute to preventing the spread of contagious diseases.

Motivation:

The increasing importance of public health and safety has led to a growing
demand for technologies that can assist in monitoring and enforcing safety
measures. Face mask detection systems play a crucial role in ensuring
compliance with mask-wearing policies in various settings, such as workplaces,
educational institutions, and public spaces. By automating the process of mask
detection, these systems can help reduce manual monitoring efforts, improve
efficiency, and contribute to maintaining a safe and healthy environment.

Scope of the Work:

This project focuses on the development of a real-time face mask detection
system using deep learning techniques. The scope includes the following key
aspects:

1. Face Detection: Utilizing a pre-trained MobileNetV2 model for accurate
and efficient face detection from video streams. This step involves identifying
and localizing faces within the captured frames.

2. Mask Detection: Training a custom mask detection model using deep
learning algorithms. The model is trained on a dataset consisting of labeled

7|Page

images of individuals wearing and not wearing masks. The objective is to
classify whether a detected face is wearing a mask or not.

3. Real-time Processing: Implementing the system to process video
streams in real-time, enabling immediate detection and identification of
individuals not wearing masks. This real-time capability is essential for prompt
action and intervention.

4, Performance Optimization: Optimizing the system to achieve real-time
processing speeds while ensuring efficient utilization of computational
resources. This involves leveraging hardware acceleration and optimizing
algorithms for improved efficiency.

The developed face mask detection system has a wide range of potential
applications, including workplaces, educational institutions, retail stores, and
transportation hubs. It can contribute to enhancing safety measures,
ensuring compliance with mask-wearing policies, and ultimately mitigating
the risk of contagious diseases.

The project's scope provides a foundation for future enhancements and
integration with other safety monitoring systems, allowing for a
comprehensive approach to public health and safety.

8|Page

Background/ Review of related work:

Face mask detection has gained significant attention in recent years due to the
need for effective measures to prevent the spread of contagious diseases.
Researchers and developers have explored various approaches to tackle this
problem using computer vision and machine learning techniques. Here, we
provide a brief background and review of related work in the field of face mask
detection.

1.

Traditional Computer Vision Approaches: Traditional computer vision
techniques, such as Haar cascades and HOG (Histogram of Oriented
Gradients), have been used for face detection in the past. These
methods relied on handcrafted features and classifiers to detect faces.
However, their performance may be limited when dealing with
variations in face orientations, lighting conditions, and occlusions.

. Deep Learning-Based Approaches: With the advent of deep learning,

convolutional neural networks (CNNs) have become a popular choice for
face mask detection. Researchers have developed CNN architectures to
perform end-to-end face detection and mask classification tasks.
Models like MobileNet, VGGNet, and ResNet have been employed to
achieve accurate face detection and mask/non-mask classification.

. Datasets for Training: Building robust face mask detection models

requires large and diverse datasets for training. Several datasets have
been curated for this purpose. Notable examples include the "Medical
Masks Dataset" and the "MaskedFace-Net" dataset, which contain
thousands of labeled images of individuals wearing masks and without
masks.

. Transfer Learning: Transfer learning has been widely used in face mask

detection to leverage pre-trained models on large-scale datasets like
ImageNet. By fine-tuning these models on specific face mask datasets,
researchers have achieved improved performance with limited training
data.

. Real-Time Face Mask Detection: Real-time face mask detection systems

have been developed to process video streams in real-time and provide

9|Page

immediate feedback. These systems utilize optimized algorithms,
hardware acceleration, and parallel processing techniques to achieve
low latency and high throughput.

6. Applications and Deployments: Face mask detection systems have found
applications in various domains. They have been deployed in public
spaces, transportation systems, hospitals, airports, and educational
institutions to monitor and enforce mask-wearing policies. These
systems help authorities identify individuals not wearing masks and take
appropriate actions to maintain public health and safety.

| @ |

h 4

§ Image stored in
system database

%
Start recogniton
process

Compare with
database image
[With mask] [Without mask]
Generate CSV
—p filewiththe (€¢————"—
images

)

Methodology:

Problem Formulation:

The main objective of this project is to develop a real-time face mask detection

system using deep learning techniques. The problem can be formulated as
10| Page

follows: Given a video stream or a sequence of frames, the system should
detect faces within each frame and classify them as wearing a mask or not
wearing a mask. The system should provide real-time feedback and display the
results with bounding boxes and labels indicating maskwearing status.

Algorithm Description:

1. Import Libraries:

The code begins by importing the necessary Python libraries and
modules that are required for the face mask detection application.
The libraries include TensorFlow, OpenCV (cv2), NumPy, and Imutils.

TensorFlow is used for loading and running the deep learning
models.

OpenCV (cv2) is used for image and video processing, including
loading, resizing, and drawing bounding boxes.

NumPy is used for numerical operations and array handling.

Imutils is used for convenient resizing of images.

2. Define ‘detect_and_predict_mask’ Function:

The function ‘detect_and_predict_mask™ takes three parameters:
‘frame’, ‘faceNet’, and ‘'maskNet".

‘frame’: This parameter represents a single frame (image) from the
video stream that will be processed for face mask detection.

‘faceNet: The pre-trained deep learning face detection model
(MobileNetV2) used to detect faces in the input frame.

‘maskNet’: The pre-trained deep learning face mask detection
model used to predict whether the detected faces are wearing
masks or not.

3. Blob Creation and Face Detection:

11| Page

The input frame is passed through the face detection model to
detect faces in the frame.

A blob is created from the frame using ‘cv2.dnn.blobFromimage()’
function. A blob is a preprocessed image that is ready to be passed
through a deep learning network.

The faceNet is then used to forward pass the blob to detect faces in
the image.

The detections are obtained as bounding box coordinates,
confidence scores, and face probabilities.

4. Lists Initialization:

Three lists, faces’, ‘locs’, and “preds’, are initialized to store the
detected faces, their corresponding bounding box locations, and the
predictions for each face, respectively.

5. Loop Over Detections:

The algorithm loops over all the detections obtained from the face
detection model.

For each detection:

The confidence (probability) associated with the detection is
extracted.

If the confidence is greater than a predefined threshold (0.5), it is
considered a valid detection, and face mask detection is performed.

The bounding box coordinates for the detected face are extracted
and converted to pixel values relative to the original frame.

The bounding box coordinates are adjusted to ensure they fall within
the frame boundaries.

The face region is extracted from the frame, resized to the input size
required by the face mask detection model (224x224), and
preprocessed for feeding to the model.

12| Page

The preprocessed face and the bounding box coordinates are added
to the ‘faces” and ‘locs’ lists, respectively.

6. Face Mask Prediction:

After looping through all the detections, the algorithm checks if any
valid faces were detected (i.e., the “faces’ list is not empty).

If valid faces are found, the ‘faces’ list is converted to a NumPy array
of float32 data type to prepare for batch prediction.

The face mask detection model (‘maskNet’) is used to predict
whether each face in the batch is wearing a mask or not.

The predictions are stored in the “preds’ list.

7. Displaying the Output:

The algorithm then proceeds to display the output on the video
frame.

For each detected face and its corresponding prediction:

The bounding box coordinates and mask/no-mask probabilities are
unpacked.

The class label ("Mask" or "No Mask") is determined based on the
probability values.

A color (green for "Mask" and red for "No Mask") is assigned for
drawing the bounding box and label text.

The probability value is included in the label text, which indicates the
confidence of the mask prediction.

The bounding box and label text are drawn on the output frame.

The output frame is then displayed in full-screen mode using
OpenCV's ‘cv2.setWindowProperty()” and “cv2.imshow()" functions.

8. Video Stream and Real-time Processing:

13| Page

- The code initializes the video stream from the default camera source
(src=0) using the "VideoStream™ class from ‘imutils.video'.

- The video stream is started to capture frames continuously.

- The loop iterates through the frames, and face detection and mask
prediction are performed on each frame in real-time.

- The processed frames are displayed with bounding boxes and label
texts indicating the presence of a mask and the associated
probability.

9. User Interaction:
- The application runs in a loop until the user presses the "q" key.
- Ifthe "g" key is pressed, the loop terminates.

10. Stop:

- After the loop, the OpenCV windows are closed
using
“cv2.destroyAllWindows() .

- The video stream is stopped using ‘vs.stop() to release the camera
resource.

Other Design Description:

Installing software using the command-line interface (CLI) offers a
streamlined and efficient approach for users to set up applications on their
systems. This method bypasses the need for graphical interfaces and
provides a text-based environment for installation. With the CLI, users
interact with their operating systems through a series of commands,
enabling them to swiftly download, configure, and deploy software packages.

To initiate the installation process via the CLI, users typically start by accessing
a terminal or command prompt. From there, they can execute commands to
connect to the appropriate package repositories or sources, which house the

14| Page

software they intend to install. These repositories may be maintained by the
operating system itself, third-party vendors, or open-source communities.

C:\Windows\system32\cmd.e:

This code required python...
[Python 3.10.0] not installed, you may get error, want
press ENTER to install
Installing Python 3.10.6
% Total % Received % Xferd Average Speed
Dload Upload
(] (]] S
: 11 27.6M 11 3288k 0
0 0:00:08 0:00:02 0:00:
100 27.6M 100 27.6M ® 3625k 0 0:00:07
click on [YES] to proceed further

Time
Total

5] c:\Windows\system32\cmd.e: X F

Fig 2: Installing required libraries

5] c:\Windows\system32\cmd.e: X S |RY

Press Enter to run STEP_3__Run.bat
[INFO] starting video stream...
(1, 200, 7)
(1, 200, 7)
(1, 200, 7)
(i 200, 7)
(1, 200, 7)
€1; 200, 7)
(& £ 200, 7)
(1, 200, 7)
(&b 200, 7)
(€ b 200, 7)
(§ 200, 7)
(1, 200, 7)
Cx; 200, 7)
¢z, 200, 7)
(1, 200, 7)
(1, 7)
(5 7)
(1, 7)
(1 7)

™

e e e = T e S S R I S S

to install?

Current
Speed
=iy (] 2] 2] 2] 2]]]

0 3172k © 0:00:08 ©0:00:01 ©0:00: 25 27.0M 25 6
38 27.6M 38 10.4M e 0 3512k 0 0:00: 52 27.
0:00:07 ——:——:—-— 3700k

Time
Left

15| Page

Fig 3: starting video stream and detecting mask from stream Implementation:

16.

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

import the necessary packages

from tensorflow.keras.applications.mobilenet_v2 import
preprocess_input

from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model

from imutils.video import VideoStream

import numpy as np

import imutils

import time

import cv2

import os

def detect_and_predict_mask(frame, faceNet, maskNet):

grab the dimensions of the frame and then construct a blob

from it

(h, w) = frame.shape[:2]

blob = cv2.dnn.blobFromImage(frame, 1.0, (224, 224),

(104.0, 177.0, 123.0))

pass the blob through the network and obtain the face
detections

faceNet.setInput(blob)

detections = faceNet.forward()

print(detections.shape)

initialize our list of faces, their corresponding locations,
and the list of predictions from our face mask network
faces =]

locs =[]

preds =[]

loop over the detections

foriin range(0, detections.shape[2]):

extract the confidence (i.e., probability) associated with
the detection

confidence = detections|0, O, i, 2]

filter out weak detections by ensuring the confidence is

16| Page

27.
28.

29.
30.
31.
32.
33.

34.
35.
36.

greater than the minimum confidence if

confidence > 0.5:
compute the (x, y)-coordinates of the bounding box for the
object

box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
ensure the bounding boxes fall within the dimensions of
the frame
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
extract the face ROI, convert it from BGR to RGB channel
ordering, resize it to 224x224, and preprocess it face =
frame[startY:endY, startX:endX] face = cv2.cvtColor(face,
cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face) face =
preprocess_input(face)
add the face and bounding boxes to their respective
lists
faces.append(face)
locs.append((startX, startY, endX, endY))
only make a predictions if at least one face was detected
if len(faces) > 0:
for faster inference we'll make batch predictions on *all*
faces at the same time rather than one-by-one predictions
#in the above for’ loop faces =
np.array(faces, dtype="float32") preds =
maskNet.predict(faces, batch_size=32)
return a 2-tuple of the face and their corresponding locations
return (locs, preds)
load serialized face detector model from disk
prototxtPath = r"face_detector\deploy.prototxt"
weightsPath =
r'face_detector\res10 300x300 ssd_iter 140000.caffemodel"
faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)
load the face mask detector model from disk

maskNet = load_model("mask_detector.model")
17 | Page

37.
38.
39.
40.
41.
42.
44,
45.
46.
47.
48.
49.
50.

51.
52.
53.

54.
55.

56.
57.

initialize the video stream
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
create a window to display the output and set it to full screen
cv2.namedWindow("Frame", cv2.WINDOW _FULLSCREEN)
loop over the frames from the video stream 43. while True:
grab the frame from the threaded video stream and resize it
to have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width=960)
detect faces in the frame and determine if they are wearing a
face mask or not
(locs, preds) = detect and _predict_mask(frame, faceNet,
maskNet)
loop over the detected face locations and their corresponding
locations
for (box, pred) in zip(locs, preds):
unpack the bounding box and predictions
(startX, startY, endX, endY) = box
(mask, withoutMask) = pred
determine the class label and color we'll use to draw
the bounding box and text label = "Mask" if mask >
withoutMask else "No Mask" color = (0, 255, 0) if
label == "Mask" else (0, 0, 255)
include the probability in the label label = "{}:
{:.2f}%" .format(label, max(mask, withoutMask) * 100)
display the label and bounding box rectangle on the output
frame
cv2.putText(frame, label, (startX, startY - 10),
i. cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
show the output frame in full screen
cv2.setWindowProperty("Frame", cv2WND_PROP_FULLSCREEN,
cv2.WINDOW _FULLSCREEN)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & OxFF

18| Page

58. #if the "q" key was pressed, break from the loop 59. if key ==
ord("qg"): break

60. # do a bit of cleanup
61. cv2.destroyAllWindows()
62. vs.stop()

Result and discussion:

Figd: Find bounding box

The code first loads two pre-trained models: a face detector and a face mask
detector. The face detector is used to identify faces in the frame, and the face
mask detector is used to determine if the person is wearing a mask. The code
then loops over the frames from the video stream and calls the
detect_and_predict_mask() function to detect faces and determine if they are
wearing masks. The detect_and_predict_mask() function returns a 2-tuple of
the face locations and their corresponding predictions. The predictions are
then used to draw bounding boxes and text on the output frame.

The code was tested on a video of people wearing and not wearing masks. The
results were accurate, with the face mask detector correctly identifying
whether or not a person was wearing a mask in most cases. The code also ran
smoothly, with no noticeable lag.

19| Page

Fig5: Detection of moving objects and “Alert” message will be shown when
the gathering is detected.

In fig5, if the number of bounding box present in one frame is more than 40,
then it will consider as gathering, which is equivalent to social distance
violation. So if the no. of bounding box is greater than 40 we will generate an
“Alert” message to notify social distance violation.

20| Page

Training Loss and Accuracy

/\//—_/—/—"\/

0.8 -

1.0 -

Loss/Accuracy
o
[«)]

o
'S

— UaIM/\

0.2 - —— val_loss
train_acc ’R‘-\”-\/
—— val_acc
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch #

1. Plotting Training Loss and Accuracy:

During the training process of the face mask detection model,
the model.fit() function is used to train the model on the training
data, and it provides information about the loss and accuracy of
the model on both the training and validation datasets after each
epoch.

This information is recorded in the H variable, which holds the
history of the training process.

The training loss, validation loss, training accuracy, and validation
accuracy are typically recorded at the end of each epoch.

The code uses Matplotlib, a popular Python plotting library, to
create a plot that visually represents the training progress.

2. Saving the Plot as "plt.png":

The code uses the plt.savefig("plot.png") function to save the
generated plot as a PNG image file named "plot.png" in the
working directory.

The plt.savefig() function saves the plot that was previously
created with the Matplotlib library.

The plot displays the training loss and accuracy curves over the
number of epochs (x-axis) on the graph, and the loss/accuracy
values (y-axis) for both the training and validation datasets.

21| Page

Figb: Coordinates of centres plotted in the graph from shopping mall video

Here in fig 6, in the graph we are plotting centroid for all the bounding box
present in our video. It represents total no of objects which is recognized
throughout the video.

Re-train till better accuracy

v

Model training Model ev.;aluation
[Image } P(via DCNN and J {

and validation
augmentation mobile net V2
A

Classification
result

Input image

Data set
Output image

Fig7: Moving object detection

In fig7, here we are testing our model for the moving object detection. From
a video of car racing we take one frame at instance of time and detect the
object present in one frame and highlight it by bounding box. In this way we
do the same for all frame present in the video. At last after concatenate all
the frame we will have a video that will highlight object by bounding box in a
moving fashion.

22 |Page

Conclusion:

In conclusion, the developed face mask detection system utilizing deep
learning techniques has shown promising results in accurately identifying
individuals wearing masks in real-time video streams. The system achieves a
high level of accuracy and robustness, allowing for effective monitoring and
enforcement of mask-wearing policies.

The system's ability to process video frames in real-time enables prompt
feedback and action, making it suitable for various applications, such as
monitoring public spaces, workplaces, and transportation systems. It provides
a user-friendly interface that displays the video stream with clear visual
indicators, facilitating ease of use and monitoring.

While the system demonstrates strong performance, there are areas for
potential improvement. Further research and development can focus on
enhancing the system's robustness to challenging lighting conditions,
occlusions, and variations in face orientations. Additionally, the system can be
extended to incorporate other features, such as social distancing monitoring
and identification of individuals in violation of mask-wearing policies.

Overall, the face mask detection system serves as a valuable tool in promoting
public health and safety. By automating the detection and monitoring of mask-
wearing, it can contribute to mitigating the spread of infectious diseases and
supporting efforts to create a safer environment for individuals.

23| Page

References:

FACE MASK DETECTION SYSTEM USING DEEP LEARNING

Mrs.B.Siva Jyothii, P.Rushithaz , B.Chanduz , M.Raja Sekhar:z, B. Manoj:z
1Assistant Professor at Department of CSE, Anil Neerukonda Institute of Technology and Sciences (A), Visakhapatnam-531162, India
2Final year students of Department of CSE, Anil Neerukonda Institute of Technology and Sciences (A), Visakhapatnam-531162, India

Abstract— Pandemic on a global scale COVID-19 An epidemic of hazardous sickness erupted in 19 countries throughout the
world. Wearing a face mask can help reduce the spread of infection and the transmission of infectious germs through the air. Face
Mask Detection System can detect whether or not people are wearing masks. For image detection, the Haar-Cascade method is
utilized. This classifier, when combined with other current algorithms, produces a high recognition rate even with varying expressions,
efficient feature selection, and a low number of false positive features. The Haar feature-based cascade classifier method uses only
200 characteristics out of 6000 to achieve an 85-95 percent recognition rate. We require mask detection as a unique and public health
service system during the global pandemic COVID-19 outbreak based on this rationale. Face mask and non-face mask images are used

to train the model.

Index Terms— Key Words: Corona virus disease 2019, Face mask detection, CNN, Machine learning

1 Introduction

The world is still recovering from the widespread of COVID-
19, and a vaccine for it’s cure has yet to be discovered. To
lessen the economic burden of the epidemic, several countries
have allowed a restricted number of economic activities to
restart once the number of new cases has decreased. Covid-19
has fallen below a particular threshold. Concerns about worker
safety have surfaced in the new post-Covid-19 climate as these
countries cautiously recommence their economic activity..

It is recommended that people wear masks and keep a
distance of at least 1 metre between them to limit the risk of
infection. Deep learning has gotten a lot of interest in the
field of object detection, and it's been used to produce a face
mask identification tool that can tell if someone is wearing a
mask or not. This can be done by studying real-time
streaming from the Camera and evaluating the categorization
findings. A training data set is required for deep learning
applications. This is the dataset that was used to train the
model to execute various tasks.

As a result, detecting face masks has become a very
important and difficult task. Face recognition without a mask
is simpler, but face recognition for a normal face can be
efficient for feature extraction than a masked face.Many
facial characteristics, such as the nose, lips, and chin, are
missing from the covered face. In the medical industry,
wearing a mask minimizes the danger of being exposed to an
infected person, whether or not they exhibit symptoms. In
two phases, a large number of face masks can be detected.

1) Face Recognition

2) Feature Extraction

The first stage is facial recognition, which entails detecting a
person's face from a picture. The most common issue is
detecting several masks and uncovered faces in an image. A
typical object can be used to solve the problem. method of
detection Face recognition as we've known it

There are algorithms in use. Adaptive Boost, Viola-Jones

Volume X, Issue VI, JUNE/2021

Algorithm HOG and Algorithm (Histogram of Gradient). In
this case, the The method of detecting objects is categorized
as multi-stage. single short detectors and detectors (SSD)
Multi-stage detectors use a faster RCNN, while Single Stage
Detectors use Haar cascade and Single-Short Detection
(SSD). Face mask detection is the subject of numerous
studies here. Video analytic, picture semantic segmentation,
from finger prints, DWT (Discreet Wavelet transform), and
LBP are some of the approaches utilized for mask detection
(Local Binary Pattern). All of thesc procedures are examined
in order to determine whether or not a person is wearing a
mask and to determine whether or not a person's face can be
recognized.

2 Literature survey:

In a Smart City Network, an Automated System to Limit
COVID-19 Using Facial Mask Detection[1]: COVID-19, a
pandemic caused by a novel coronavirus, has been spreading
over the world for a long time. COVID-19 has had an impact
on practically every aspect of development. The healthcare
system is in a state of emergency. Wearing a mask is one of
the many preventative steps adopted to minimize the spread of
this disease. In this paper, we will look upon

In a smart city network where all public places are monitored
by Closed-Circuit Television (CCTV) cameras, we propose a
technique to limit COVID-19 growth by identifying people
who are not wearing any facial mask. When a person without
a mask is spotted, the city network notifies the appropriate
authority. A dataset of photos of people with and without
masks acquired from diverse sources is used to train a deep
learning architecture. For previously unreported test data, the
trained architecture distinguished people with and without a
facial mask with 98.7% accuracy.

Our research is intended to be effective in reducing the spread
of this infectious disease in many areas throughout the world.

Face Recognition using a Masked Convolutional Neural

Network[2]: In recent years, face recognition has become a
popular and important technique. Face changes and the use of

Page No : 430

24 |Page

several masks make it far too difficult. Masking is another
prevalent case in the real world when a person is
uncooperative with equipment, such as in video surveillance.
For these masks, current face recognition The quality of the
work suffers. A large number of studies have been conducted
on recognizing faces in a variety of situations, such as shifting
stance or light, degraded photos, and so on. Nonetheless, the
challenges posed by masks are sometimes overlooked. The
main focus of this research is on facial masks, specifically
how to improve the recognition accuracy of various masked
faces. A workable strategy has been developed, which
involves detecting the facial regions first. A Multi-Task
Cascaded Convolutional Neural Network was used to solve
the obstructed face identification problem (MTCNN). The
Google FaceNet embedding model is then used to extract
facial traits.

Existing system:

A Multi-Task Cascaded Convolutional Neural Network was
used to solve the face detection challenge (MTCNN). The
Google Face Net embedding model is then used to extract
facial features.. This technique can train a dataset of both
people wearing masks and those who aren't wearing masks.
The system can anticipate whether or not the person is
wearing the mask after training the model.

3 Methodology:

Proposed system:

1. This system is capable to train the dataset of both persons
wearing masks and without wearing masks.

2. After training the model the system can predicting whether
the person is wearing the mask or not.

3. It also can access the webcam and predict the result.

DEEP LEARNING

v" Deep learning is an artificial intelligence function that
mimics the human brain's processing of data to detect
objects, recognise speech, translate languages, and make
judgments.

v 'Deep learning' is a term that refers to Al can learn without
the need for human intervention, using both organised and
unlabeled data.

PR SuE
N

Input Cc1

Fig 1:- deep learning model
Volume X, Issue VI, JUNE/2021

Face mask detection is done using Convolution Neural
Networks, a Deep Learning approach (CNN). The
connectivity pattern between neurons in convolutional
networks is similar to the organisation of the visual cortex,
which was inspired by biological processes. In comparison to
other image classification methods, CNNs require very little
pre-processing. CNN is a type of multilayer neural network
that is applied to 2-dimensional arrays (typically pictures) and
is based on spatially localised neural input. CNN For pattern
recognition, create "patterns of patterns." Patches from
previous layers are combined in each layer. Convolutional
Networks are multistage topologies with numerous stages that
can be trained. Enter a Each stage produces feature maps,
which are collections of arrays. Each feature map on the
output represents a single feature taken from all input
locations. A filter bank layer, a non-linearity layer, and a
feature pooling layer make up each stage. A ConvNet is made
up of three layers in which each one is followed by a
classification module.

Basic structure of CNN, where it consists of two C1,C3 are
convolution layers and two S2,S4 are pooled/sampled layers.
In a filter bank, a trainable filter (kernel) connects the input
feature map to the output feature map.Convolutional layers
perform a convolution on the input before forwarding the
output to the next layer. The convolution simulates a single
neuron's reaction to visual input.

HAAR CASCADE

For object detection haar cascade classifier are one of the
effect way.It was proposed by Michael jones and Paul Viola.It
is used in Boosted cascade for rapid object detection of
simplest features so this machine learning approach are used
to train these classifier with lot s positive and negatives
images.The images which the classifier identifies are positive
images and all the other images which it could not detect are
negative images.

We use this haar like features for human face detection which
are divided into three formations.The edge feature is the first
format,line is the second format and the last is four-rectangle
feature.This haar like principle provides fast computation
using the integral.So this haar cascade specific features of a
face can be identified using this algorithm.Using this detection
the image can be converted into a window 24X24 pixels.
Initially lot of positive images and negative images are given
as a data set to train this classifier .

CONVOLUTIONAL LAYER

It always comes first. It receives the image (a matrix of pixel
values). Assume that the input matrix's reaction starts at the
top left of the image. The software then chooses the smaller
matrix there, which is referred to as a filter. The filter then
generates convolution that moves over the input image. The
filter's job is to multiply the original pixel values by its value.
All of these multiplications are added together, yielding a
single number. The filter moves because it only reads the
image in the upper left corner.Additionally, one unit on the
right performs a similar operation. A matrix is created after

Page No : 431

25| Page

passing the filter through all points, however it is less than the
input matrix. From a human standpoint, this operation is
comparable to distinguishing visual boundaries and simple
colours. However, in order to recognise the fish, the entire
network is required. Several convolution layers will be
blended with nonlinear and pooling layers in the network. The
first layer to extract features from an input image is
convolution. Small squares of input data are used in
convolution. It's a mathematical procedure with two inputs: an
image matrix and a filter or kernal.

v" Dimension of an image matrix (h x w x d)
v' Afilter (fh x fw x d)
v Outputs a volume dimension (h-fh+1) x (w-fw+1) x1.

Consider a 5 x 5 whose image pixel values are 0, 1 and filter
matrix 3 x 3 as shown in below

Convolution with a filter example

Then the convolution of 5 x 5 image matrix multiplies with 3

x 3 filter matrix which is called “Feature Map” as output
shown in below

X0l Z 1O 1D
G EN N 4|34
O|O ’n 5.1'],q 214 |3
0|0 b 13| 4
olxl+olo]
Convolved
image Feature

Fig 2:- Output of Convolution layer

THE NON-LINEAR LAYER:

After each convolution process, it is adder. It features an
activation function that provides a non linear property; without
this trait, a network would be insufficiently intense and unable
to simulate the response variable.

THE POOLING LAYER:

It moves in the same direction as the nonlinear layer. It works
with the image's width and height, performing a down
sampling procedure on them. As a result, the size of the image
is lowered. This means that if some features were already
recognised during the previous convolution operation, a
detailed image is no longer required for further processing and
is reduced into smaller images.

Volume X, Issue VI, JUNE/2021

Single depth slice

a2 | 4
- max pool with 2x2 filters —=
518 7|8 and stride 2 | 6 8 |
3| 2 [EINEG 3|4 ’
1]2]3]4

e —

y
Fig 3:- Max Pooling Layer

Feature Mags Ftreblags Falurebags

:.I Feature Maps
Ty

"ttty
Dmm[%)
[reetes
_Dotony

M

~ 4

T A

(omaiubion fodling Comolubon Pooing ‘
Hhely Vel Fll Comectd Laes

Outaut ayee
Fig 4 Overall structure of CNN
FULLY CONNECTED LAYER:

It's primary to link an overall linked layer after completing the
succession of convolution, non-linear, and pooling layers. This
layer receives the convolution network's output data. When a
completely connected layer is attached to the network's end, it
produces an N-dimensional vector, where Ni is the number of
classes from which the model chooses the needed class.

CNN MODEL
1. The Tensorflow framework and the Opencv library
were used to create this CNN model, which is widely utilised

in real-time applications..

2. This concept can also be used to create a full-fledged
software that scans everyone entering a public meeting.

LAYERS IN CNN MODEL
1. Conv2D Layer

2. MaxPooling2D Layer

3. Flatten () Layer

4. Dropout Layer

5. Dense Layer

Page No : 432

26 |Page

1. Conv2D Layer:

© 0 0 O -
- R - R
- e e e
© = = o
© © = o o

-0 -
e - o

5 x5~ Image Matrix 3 x 3 ~ Filter Matrix

Fig 4:- 2d layer model

It has 100 filters and the activation function used is the
‘ReLu’. The ReLu function stands for Rectified Linear Unit
which will output the input directly if it is positive, otherwise
it will output zero.

2.MaxPooling2D:
It is used with pool size or filter size of 2*2.

3.Flatten () Layer:
It is used to flatten all the layers into a single 1D layer.

4.Dropout Layer:
It is used to prevent the model from overfitting.

5.Dense Layer:
The activation function here is softmax which will output a
vector with two probability distribution
values.

Volume X, Issue VI, JUNE/2021

Data Visualization
|
Data Augmentation

.

Splitting of Data

!

Building the Model

|

Pre-Training the CNN

|

Training CNN Model

|

Labeliing information

*

importing the Face detechion
program

l

Detection

-

Mask e 2 NO Mask

Fig 5 :- PROPOSED SYSTEM ARCHITECTURE

Steps

Data Visualization.

Data Augmentation.
Splitting the data.

Labeling the Information.
Importing the Face detection.

Detecting the Faces with and without Masks.

Data Visualization

Let's start by visualising the total number of photographs in
both categories in our dataset. We can observe that the ‘yes'
class has 690 photographs while the ‘no' class has 686 photos.

Data Augmentation
In the next step, we augment our dataset to include more
number of images for our training. In this step of data

augmentation, we rotate and flip each of the images in our
dataset.

Page No : 433

27 |Page

Splitting the data

In this step, we split our data into the training set which will
contain the images on which the CNN model will be trained
and the test set with the images on which our model will be
tested.

Building the Model
In the next step, we build our Sequential CNN model with
various layers such as Conv2D, MaxPooling2D, Flatten,
Dropout and Dense.

(1962001) (196290,1)

(150,150,3)

(148,148,100

s

MaxPooling2D)

Conv2D MaxPooling2D

Flatten() Dense()

Dropout(0.5)

Fig 6 :-Pre-Training the CNN model

After building our model, let us create the ‘train_generator’
and ‘validation_generator’ to fit them to our model in the next
step.

Training the CNN model
It is an important step where the images fit in the training set
and to the test set for sequential model by using keras
library.This model is trained for 30 epochs(iterations).For high
accuracy we have to use more number of epochs in its training
there it occurs over-fitting.

Labeling the Information

After building the model, we label two probabilities for our
results. [‘0” as ‘without mask’ and ‘1’ as ‘with_mask’]. T am
also setting the boundary rectangle color using the RGB
values.

Importing the Face detection Program

After this, we intend to use it to detect if we are wearing a face
mask using our PC’s webcam. For this, first, we need to
implement face detection. In this, I am using the Haar Feature-
based Cascade Classifiers for detecting the features of the
face.

Detecting the Faces with and without Masks
In the last step, we use the OpenCV library to run an infinite

loop to use our web camera in which we detect the face using
the Cascade Classifier.

Volume X, Issue VI, JUNE/2021

Dense)

INPUT AND OUTPUT
INPUT DATASET

https://github.com/prajnasb/observations/tree/master/experiem
ents/data

4 Experiential Results

true: without_mask predicted: without_mask

0 I 50 75 10 125 150 175 200

Fig 7 :- figure with no mask

True:
o

with_mask predicted: with_mask

C-

100 125 150 175 200

6 2 s0 75

Fig 8 :- figure with mask

Page No : 434

28 | Page

. Adrian Rosebrock, "Face Mask Detection with
OpenCV,

Keras/TensorFlow, and Deep Learning," PylmageSearch, 2020. [Online].

Available: https://www.pyimagesearch.com/2020/05/04/covid-

19face-mask-detection-with-opencv-keras-tensorflow-and-

deeplearning/.

. P. Jaiswal, R. Sharma, S. Gupta, and M. R. Gupta, "Real-time Face Mask

Detection using Deep Learning and OpenCV," International Journal of
Scientific Research in Computer Science, Engineering and Information
Technology (IJSRCSEIT), vol. 5, no. 5, pp. 12-18, 2020.

. H. T. Balci, F. Demir, and H. Demir, "Real-time Face Mask Detection in
Video Streams with Deep Learning," I|EEE Access, vol. 8, pp.
155851155860, 2020.

. A. M. Salem, M. F. Ahmed, and M. E. Abdelaziz, "Real-time Face Mask
Detection using Convolutional Neural Networks," in 2020 International
Conference on Computer and Information Sciences (ICCIS), 2020, pp. 1-
6.

. P. Gupta, A. Gupta, N. Bansal, and A. Goel, "Real-time Face Mask
Detection using Deep Learning Techniques," in 2021 International
Conference on Inventive Computation Technologies (ICICT), 2021, pp. 1-
6.

. OpenCV Library, "OpenCV: OpenCV documentation,” docs.opencv.org.
[Online]. Available: https://docs.opencv.org/.

29| Page

https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detection-with-opencv-keras-tensorflow-and-deep-learning/
https://docs.opencv.org/
https://docs.opencv.org/

